Two-phase flow problem coupled with mean curvature flow

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mean curvature flow with obstacles

We consider the evolution of fronts by mean curvature in the presence of obstacles. We construct a weak solution to the flow by means of a variational method, corresponding to an implicit time-discretization scheme. Assuming the regularity of the obstacles, in the two-dimensional case we show existence and uniqueness of a regular solution before the onset of singularities. Finally, we discuss a...

متن کامل

Mean Curvature Blowup in Mean Curvature Flow

In this note we establish that finite-time singularities of the mean curvature flow of compact Riemannian submanifolds M t →֒ (N, h) are characterised by the blow up of the mean curvature.

متن کامل

Phase field method for mean curvature flow with boundary constraints

This paper is concerned with the numerical approximation of mean curvature flow t → Ω(t) satisfying an additional inclusion-exclusion constraint Ω1 ⊂ Ω(t) ⊂ Ω2. Classical phase field model to approximate these evolving interfaces consists in solving the AllenCahn equation with Dirichlet boundary conditions. In this work, we introduce a new phase field model, which can be viewed as an Allen Cahn...

متن کامل

Mean curvature flow

Mean curvature flow is the negative gradient flow of volume, so any hypersurface flows through hypersurfaces in the direction of steepest descent for volume and eventually becomes extinct in finite time. Before it becomes extinct, topological changes can occur as it goes through singularities. If the hypersurface is in general or generic position, then we explain what singularities can occur un...

متن کامل

Riemannian Mean Curvature Flow

In this paper we explicitly derive a level set formulation for mean curvature flow in a Riemannian metric space. This extends the traditional geodesic active contour framework which is based on conformal flows. Curve evolution for image segmentation can be posed as a Riemannian evolution process where the induced metric is related to the local structure tensor. Examples on both synthetic and re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Interfaces and Free Boundaries

سال: 2012

ISSN: 1463-9963

DOI: 10.4171/ifb/279